Summary of Laboratory Performance in AIR NO$_2$ Proficiency Testing Scheme (October 2015 – August 2017).

Reports are prepared by LGC for BV/NPL on behalf of Defra and the Devolved Administrations.

Background

AIR is an independent analytical proficiency-testing (PT) scheme, operated by LGC Standards and supported by the Health and Safety Laboratory (HSL). AIR PT is a new scheme, started in April 2014, which combined two long running PT schemes: LGC Standards STACKS PT scheme and HSL WASP PT scheme.

AIR offers a number of test samples designed to test the proficiency of laboratories undertaking analysis of chemical pollutants in ambient, indoor, stack and workplace air. One such sample is the AIR NO$_2$ test sample type that is distributed to participants on a quarterly basis.

AIR NO$_2$ PT forms an integral part of the UK NO$_2$ Network’s QA/QC, and is a useful tool in assessing the analytical performance of those laboratories supplying diffusion tubes to Local Authorities for use in the context of Local Air Quality Management (LAQM). With consent from the participating laboratories, LGC Standards provides summary proficiency testing data to the LAQM Helpdesk for hosting on the web-pages at http://laqm.defra.gov.uk/diffusion-tubes/qa-qc-framework.html. This information will be updated on a quarterly basis following completion of each AIR PT round.

Defra and the Devolved Administrations advise that diffusion tubes used for Local Air Quality Management should be obtained from laboratories that have demonstrated satisfactory performance in the AIR PT scheme. Laboratory performance in AIR PT is also assessed, by the National Physical Laboratory (NPL), alongside laboratory data from the monthly NPL Field Intercomparison Exercise carried out at Marylebone Road, central London.

The information is used to help the laboratories to identify if they have problems and may assist them to devise measures to improve their performance and forms part of their work for Defra and the Devolved Administrations under the Local Air Quality Management Services Contract.

AIR NO$_2$ PT Scheme overview

Purpose of scheme

The AIR PT scheme uses laboratory spiked Palmes type diffusion tubes to test each participating laboratory's analytical performance on a quarterly basis and continues the format used in the preceding WASP PT scheme. Such tubes are not designed to test other parts of the measurement system e.g. sampling. Every quarter, roughly January, April, July and October each year, each laboratory receives four diffusion tubes doped with an amount of nitrite, known to LGC Standards, but not the participants. At least two of the tubes are usually duplicates, which enables precision, as well as accuracy, to be assessed. The masses of nitrite on the spiked tubes are different each quarter, and reflect the typical analytical range encountered in actual NO$_2$ ambient monitoring in the UK.
Preparation of test samples

Diffusion tubes are spiked using a working nitrite solution prepared from a stock solution. The concentration of this stock solution is initially assayed using a titrimetric procedure. All steps in the subsequent test sample production process, involving gravimetric and volumetric considerations, are undertaken using calibrated instruments employing traceable standards. As an additional cross check, 12 spiked Palms tubes are picked at random from each spike loading level and submitted to a third party laboratory which is accredited to ISO 17025 to undertake this analysis using an ion chromatographic procedure.

In summary, the tube spiking precision is calculated to be better than 0.5%, expressed as a standard deviation, and this is derived from repeat gravimetric checking of the pipette device used to spike the test samples. The calculated spike values, derived from titrimetric, gravimetric and volumetric considerations, are found to be typically within ± 3 % of results obtained by the third party laboratory using an ion chromatographic analytical procedure.

Scheme operation

The participants analyse the test samples and report the results to LGC Standards via their on-line PORTAL data management system. LGC Standards assign a performance score to each laboratory’s result, based on how far their results deviate from the assigned values for each test samples. The assigned values are best estimates of the levels of nitrite doped onto the test sample tubes and are calculated from the median of participant results, after the removal of test results that are inappropriate for statistical evaluation, e.g. miscalculations, transpositions and other gross errors. At the completion of the round, laboratories receive a report detailing how they have performed and how their results relate to those of their peers.

Performance scoring

The z-score system is used by LGC to assess the performance of laboratories participating in the AIR PT NO$_2$ scheme.

The Z_{score} may be defined as:

$$Z_{\text{score}} = \frac{(x_{\text{lab}} - \overline{x}_{\text{assigned}})}{\sigma_{SDPA}}$$

Where:

- x_{lab} = participant result from a laboratory
- $\overline{x}_{\text{assigned}}$ = assigned value
- σ_{SDPA} = standard deviation for performance assessment (currently set at 7.5 % of $\overline{x}_{\text{assigned}}$)
Performance score interpretation

A Z score is interpreted as described below:

- $|Z_{\text{score}}| \leq 2$ indicates satisfactory laboratory performance
- $2.0 < |Z_{\text{score}}| < 3$ indicates questionable (warning) laboratory performance
- $|Z_{\text{score}}| \geq 3$ indicates unsatisfactory (action) laboratory performance

As a general rule of thumb, provided that a laboratory does not have systematic sources of bias in their laboratory measurement system, then on average, 19 out of every 20 z-scores should be $\leq \pm 2$. In this scheme each laboratory receives 4 test samples per round and therefore submits 4 z-scores per round. Hence over 5 rounds laboratories would receive 20 test samples and report 20 z-scores.

Assessing the performance of a laboratory

End users that avail of analytical services from laboratories should satisfy themselves that such laboratories meet their requirements. A number of factors ideally need to be considered, including:

- Expertise and skills of staff within the laboratory?
- Does the laboratory follow accepted measurement standards, guidance?
- Does the laboratory operate a robust internal quality control system?
- Is the laboratory third party accredited to relevant standards such as ISO 17025?
- Does the laboratory successfully participate in relevant external proficiency testing schemes? and
- How good is their customer care (communication, turnaround times, pricing etc)?

Participation therefore, in an external proficiency-testing scheme such as AIR PT, represents but one factor in such considerations.

Participation in a single round of an external proficiency-testing scheme represents a “snap-shot” in time of a laboratory’s analytical quality. It is more informative therefore to consider performance over a number of rounds.

Following on from above, therefore over a rolling five round AIR PT window, one would expect that 95 % of laboratory results should be $\leq \pm 2$. If this percentage is substantially lower than 95 % for a particular laboratory, within this five round window, then one can conclude that the laboratory in question has significant sources of error within their analytical procedure.

A summary of the performance, for each laboratory participating in the AIR PT scheme, is provided in Table 1. This table shows the percentage of results where the absolute z-score, for each laboratory, was less than or equal to 2, i.e. those results which have been assessed as satisfactory.
Contacts

Further **specific** information on the LGC AIR NO\textsubscript{2} PT scheme is available from LGC proficiency testing on 0161 7622500 or by email at customerservices@lgcgroup.com.

For **general** questions about the scheme within the context of wider LAQM activities please contact Nick Martin at NPL on 0208 943 7088 or nick.martin@npl.co.uk.
Table 1: Laboratory summary performance for AIR NO₂ PT rounds AR0010, 12, 13, 15, 16, 18, 19 and 21

The following table lists those UK laboratories undertaking LAQM activities that have participated in recent AIR NO₂ PT rounds and the percentage (%) of results submitted which were subsequently determined to be satisfactory based upon a z-score of ≤ ± 2 as defined above.

<table>
<thead>
<tr>
<th>AIR PT Round</th>
<th>AIR PT AR010</th>
<th>AIR PT AR012</th>
<th>AIR PT AR013</th>
<th>AIR PT AR015</th>
<th>AIR PT AR016</th>
<th>AIR PT AR018</th>
<th>AIR PT AR019</th>
<th>AIR PT AR021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aberdeen Scientific Services</td>
<td>100 %</td>
</tr>
<tr>
<td>Edinburgh Scientific Services</td>
<td>100 %</td>
</tr>
<tr>
<td>Environmental Services Group, Dicot [1]</td>
<td>100 %</td>
<td>100 %</td>
<td>75 %</td>
<td>75 %</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Glasgow Scientific Services</td>
<td>100 %</td>
<td>75 %</td>
<td>100 %</td>
<td>0 %</td>
<td>100 %</td>
<td>100 %</td>
<td>50 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Gradko International [1]</td>
<td>100 %</td>
</tr>
<tr>
<td>Kirklees MBC</td>
<td>100 %</td>
</tr>
<tr>
<td>Lambeth Scientific Services</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td>75 %</td>
<td>100 %</td>
<td>75 %</td>
<td>75 %</td>
</tr>
<tr>
<td>Milton Keynes Council</td>
<td>100 %</td>
<td>50 %</td>
<td>100 %</td>
<td>75 %</td>
<td>100 %</td>
<td>75 %</td>
<td>75 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Northampton Borough Council</td>
<td>100 %</td>
<td>50 %</td>
<td>100 %</td>
<td>NR [2]</td>
<td>75 %</td>
<td>0 %</td>
<td>NR [3]</td>
<td>NR [3]</td>
</tr>
<tr>
<td>Somerset Scientific Services</td>
<td>100 %</td>
</tr>
<tr>
<td>South Yorkshire Air Quality Samplers</td>
<td>75 %</td>
<td>100 %</td>
<td>100 %</td>
<td>75 %</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Staffordshire County Council</td>
<td>75 %</td>
<td>75 %</td>
<td>75 %</td>
<td>100 %</td>
<td>NR [2]</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>West Yorkshire Analytical Services</td>
<td>75 %</td>
<td>75 %</td>
<td>100 %</td>
<td>NR [2]</td>
<td>50 %</td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

[1] Participant subscribed to two sets of test samples (2 x 4 test samples) in each AIR PT round.
[2] NR No results reported
[3] Northampton Borough Council, Kent Scientific Services, Cardiff Scientific Services, Kirklees MBC and Exova (formerly Clyde Analytical) no longer carry out NO2 diffusion tube monitoring and therefore did not submit results.